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The infinite set of conserved currents in the Sine-Gordon and the massive Thirring
field-theory models is considered. In the quantum theory certain anomalous terms in the
Ward identities arise as a result of renormalization. It is shown that the former lead
actually omnly to a slight modification of the classical expressions for the conserved
currents. Thus the most remarkable features of the models: particle number conserva-
tion, trivial scattering and factorization of the S-matrix are proved in perturbation theory.

1. Introduction

In the last few years some exact solvable nonlinear evolution equations [1]
attracted extreme interest in particle physics since they exhibit nontrivial “ex-
tended particle” solutions (solitons), which may provide a fundamental basis for
constructing unified theories where hadrons arise as coherent excitations of
lepton fields [2]. In this sense two dimensional models are known to be of
great significance in elucidating the phenomenon of solitons. The most inte-
resting examples are the Sine-Gordon (SG) and the massive Thirring (MTh)
models with Lagrangians, respectively,
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At the classical level they were exactly solved by the inverse scattering
method [3, 4] and were shown to be completely integrable Hamiltonian sys-
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tems. i. e. they posses an infinite number of conservation laws. The conserved
charges have local densities which acquire a particularly simple form with the

variables 7—"T%, a:_-tgx- In the SG theory the currents may be evaluated

2
from the following recurrence relations:
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The remaining part of the recurrence relations is obtained from (1.1) by in-
terchanging o <5 e. j&M, k=1,2,... are the total r-derivatives. J#%+1) are homo-

geneous functions of 2k-+2 degree in 0, and a sum of monomials in ¢, and
its derivatives of 2, 4,...,2k+2 degree. The j obey the conservation law

0 J 40, jim =0,

We consider the M Th model (classically) in the case where the w’s be-
long to a Grassmann algebra with involution unlike the c-number case [4].
This is reasonable if one has in mind further quantization. Here also an infi-
nite set of conservation laws was found [5]:

(1.2) Oy, 0n—1 . C.)=im0y(w,bp_1+ 1 .c.),

where 0, are recursively determined from

(13)  buyr=0,by—iiypip.ba—2id 2 b'wbi+widnsr0; ba=0, n<O0.

R+ l=n

k=0
The remaining part of the conserved currents is obtained from (1.2) by means
of the changes 122, 6 = v All currents for even n are total derivatives.

In quantum theory we proceed within the framework of renormalized per-
turbation theory. The SG is superrenormalizable: the single “point-loop” diver-
gence is removed by normal ordering. In order to set the pole of the full
propagator at point p?—m? we have to add a finite counterterm of mass re-

normalization —%—Amﬂ(ﬁ): ®?:. However, the conservation of jif’ is thus spoiled.

Therefore, following [6] we add a finite counterterm %rﬁmﬂ(ﬁ): (cosfp—1): 80

as to retain the structure of the (cospfp—1), interaction, where the series
om*(p) in B is constructed recursively in perturbation theory using the require-
ment imposed on the pole of the full propagator. Thus we have the follow-

ing effective lLagrangian:

m2 B o~
L= %: 1(0,p)2—m2p?]: + : mﬁgﬁj(cas ﬁqa—l)—}—fi—;z :, mA(f)=m?+ om3(p).

All ji"(x) are composite fields and we shall quantize them according to

the Zimmermann normal-product formalism [7] with minimal number of sub-
tractions w(y)=d—2n,, where d is the cannonical dimension of the composite
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operator coinciding with the number of derivatives contaired in it, and », is
the number of ordinary SG interaction vertices of the subgraph y containing
the composite operator vertex. It was observed [8] that renormalization effects
may lead to anomalies in the Ward identities (WI) for J(x).

Similarly, our discussion of the MTh model is based on the effective
Lagrangian [9]: g T

oig__ 'I.'(] -I-'b)'-_-:j .If:-'_;:f }'._._(m_l_a)‘_ . _JL+Ef( 1 !2-
Gt oy, YaY Py = (wrry) s,

where a, b, ¢ denote finite mass-, field- and charge-renormalization constants,

respectively. The classical currents 707" =y\b,—h.c. etc.) arealso quantized
by normal products with minimal number of subtractions w(y)=d—N(y)/2,
where d is the cannonical composite-operator dimension and MN(y) is the number
of external fermion lines in the subgraph y. Here also the normal product re-
normalization causes the appearance of anomalous terms in the WI for the
quantized currents.

The main attempt in this paper is to show that the application of the
quantum equations of motion (QEM) [10] and the Zimmermann identities (ZI)
relating the normal products with the different number and order of subtrac-
tions [7] all anomalous terms of WI in both SG and MTh (see Sect.2 and 3),
leads simply to the addition of certain terms to the classical expressions of
J% and /), respectively. The quantized currents thus modified are conserved

which in the momentum space on the mass shell is equivalent to the follow-
ing relations:

k m ' k

g % ' uty2n
(1.4) 2 (plnyn+t= ‘L (poutyn+t, 3 (pj:)zm g \ (por)+15 n=0, 1,
Jj=1 J=m+1 .f~—1 ;—m+1

in any scattering processes described by the matrix element (p,i1,...p.;
out|p,..., pm; in). It is an observation due to Faddeev and Polyakov
[11] that (1.4) is equivalent to the statement that the S-matrix is a pure phase,
1. e. the particle number is conserved and the scattering is trivial (the sets of
in- and outgoing particle momenta coincide). Besides that, according to ref. [12],

the S-matrix is factorized.
The results in Sect. 2 and 3 were reported in a brief form elsewhere [13, 5].

2. Quantum Sine-Gordon Model

In order to derive the WI for jf”) we shall use the QEM written in

terms of Green functions:
(TN[B (9.,)] (x)X) = —mXTN[B{0g}] (x)X)
(2.1)

.-...-

+<7N[Bd" (m% -—ﬁ—sm ﬁqa)J(x)X)—wL \ (07d(x—y;)) (TN|B] (x) Xf,»,

=1

Xs Hf;(y.z X/ Hc.v &

=)

where B is an arbitrary mﬂnomlal in ¢ and its derivatives, V denotes a
normal product with minimal number ' of 'subtractions, the curly brackets {Q}
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represent 2 oversubtractions in every subgraph, coniaining lines correspond to
the composite operator Q. The last term in (2.1) is that usually called “con-
tact term” or “covariant Schwinger term” [10].

2
LLet us consider first the case of jf* for simplicity (j_£3]=9?.r¢?.m+ﬁ-z t;v:’,,

jf’zm; @, SIN ﬁqa). Applying (2.1) we get the WI for ji9:
0 TN[ jP] (x)X)+0LTN[ j] (%) X)
k k
(22) =—i ) (0%(x—y))(To. Xy —i 2 8(x—yXTN[B? +,eee] (%) X7)
J=1 J=1

+ MA TN [@,2ee(@—{0}) + 0,2 (0,0 —{@.2:))] () X) + 82m* T N[ (p—{o})] () X).
The last two terms are “anomalous”. The first of them may be transformed
into m*TN[0(9,.—{pp,.})]X) and added to j©). Then we have to compute

the second “anomalous” term by means of the ZI [7]. All graphs contributing
in our case are depicted in Fig. 1.
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Fig. 1. General graphical form of the Zimmermann identity for
(TN[g,; (% = {#)I(*)X)

Fig. 2. Graphs contributing to the Zimmermann identity for
(TN[¢> (g —{@ (X)X

Lines carrying derivatives are marked by a bar. D) denotes the s+1—

: - " . P
order term of the Taylor expansion operator 2_,1 e pﬁ,"’f(‘f3 m( a)ﬂ, )
1 A pf s . pis
1 )
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acting on the set L of external lines of the subgraphs in the boxes, n, is the

;"
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number of ordinary SG vertices in the latter (see Sect. 1). Thus the contri-
butions of every box represent constants (eventually dependent on j and m?)
in coordinate space which are invariant Lorentz tensors (formed by £, €uv)
times differential operators of order s acting on the lines of L. Two obvious
simplifications can be performed: the second D) operator vanishes for every
box, because of the absence of invariant tensors of odd rank and only boxes
with 7,—1 contribute as a corollary of the antidiagonal representation of g,
in o, 7-components (see Fig. 2).
Analytically the ZI reads (we suppress irrelevant factors):

N @O — o) =, ™ BN[OD (cos pg)|-+- €2 ms BN[0.(g* cos By)
(23)

| 32: p (53_% ﬁﬂcﬂ)N[@’-’*’i sin B,

where c,/m2, c,/m?, co/m? are the corresponding contributions of all boxes in
Fig. 2. Applying QEM (2.1) to the last term in (2.3) we get

N1o (@ —toD] (1—38 (c3— 4 2s) ) =, ™ BN [02 (cos )]

3 ,me : 3 m2p 1
R4) 3™ PN cos o)+ T (€ €NV [0.(%)
it k
, Bem= 1 Y ; 0
3i *5m’: (53_42_ ﬁﬂcz) éa(x —y;)N[qu]aﬂyﬂ.

Inserting (2.4) in (2.2) we obtain a new WI for the modified current ]'Ed‘-' with-
out anomalies: |

(2.5) 0LTN[J®)(x)X)+0LTN[jP] (x) X)
ke
= —1 2:‘3("‘: — )TN [2‘?@.:” ‘{‘ﬁﬂ(}“)i(l ”‘362(‘33 “"lj B? ¢y ))_11 (W) j(j;
J=1

3p*= (fa H—;' ﬁ"’"ﬂﬂ)

1-—-3p° ("33“% ﬁ"!ﬂu)

@ |»

' T

TO =Moot 2|1

753} (X):N [tp,ﬂ-' sin by . (1 5 clﬁi"}‘cﬂﬁa) ": + fﬁﬂﬁz (03— -g— Ugﬁg“{‘c l_ﬁd‘) Q?i COS ﬁt}?l .

It is obvious from the preceding analysis that the only source of “anomalies”

is contained in terms like (TN[Q0%p—{@})](x)X) where Q is a certain mo-
nomial in ¢ and its derivatives. In the general case we have from (1.1)

(2.6)n+ 1) (x)= D pPr e (0. .. (09) D n=2r+2,2 In=2n+2,
r=0 it o 1=1 I=1

rl, - L]
=0

where e

_are real numbers (nonnegative). Proceeding in the same way as
i

in the j-case we obtain the following “anomalous” terms in the WI for
7}
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Here QCn+1)(g), Bt’? 1) (r:p ) are monomials in ¢ and 1ts der:vatwes B+ e, ),

have the same general form like (2.6) but with 2?:‘; 2r+1, Zln_Qn—H
Applying the ZI to the second term in (2 7) we obtam

N[B"+ e, ('-'I*"-{ff})]‘ | (W[d PEHD (g,)]
(2.8)
o ::j__;?:p(ﬁ)N [BE 1 (,.) sin o),
o

where P@n+l(g ) are other monomials, «,(8) and Vip(B) are finite series in f

with zero constant term, the coefficients of which may be computed explicitly.
On the other hand, the QEM give

et

% N[BE ) (p,) sin o] = N[0,RE D (¢, )] =" 3 ai,N[BE+D (g,) sin o]

(2.9) - o
+m2 X b, N (B (p—{g))) i 2 Zcr N[BEr+D]8(x - y,)3—fﬁ—,
gl Tl pasi 'f(y_;)

where R;""" (p,) are monomials, a;, b, c;, are nonnegative integers, (2 8) and
(2.9) are a nonhomogeneous set of linear algebraic equations for the “anoma-
lous” terms with nonvanishing determinant (at least in perturbation theory)
and with Schwinger terms and total derivatives of field monomials as non-
homogeneous terms. Its solution reads:

F . -

meN (B .) (0 {#h) = X O BIN| moay(B)0. PO @) 48 3y B

s=1 .. ki 7.q=1

¢ . 8 - b L1 6
. o - L f ] r=

. AR

| EU;F = aip“l" ﬂfpr Dfr(ﬁ) 'rsfr ﬁ Z yiﬂ{ﬁ)ﬂ'}pg b?r

pg=1

In this way we obtain new WI for the modified quaﬁthni currents j 1Y

- O TN @0} () X )4+ 0L TN[ j n:+0)] (%)=~ Y’a(x—yf) 2 (%

Lr=1
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s,p,qg=1

(210)  JOrO(x)=N[j@D ()~ D Q5 By B, iR (9,0)
Ls,p,qg=1

r—

E

et ()= N| jentD) (x)—m2(B) D, 2 (Bas(BYPE" D (p,.) — m2QE+D () | .
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The integrated (over x) (2.10) in momentum space on the mass shell gives

n’! b :
(EZFI;(ﬁ)G£?H+' 1) (ﬁ: m)) (2;(}?}3)2ﬂ+1 ol Z (pf}:lt)?rzﬂ)
Jr=1 JAL

(2.11)
><<pm+h vooy Prs out |P1: ev oy Pms IH)ID,
where we have used the following notations:

nt

Fi(B)=0i+p E le(ﬁ)ﬁp(ﬁ)m;;cqn

s,p,g=1
BTN BV (@) ()X = TN B (@] (1)@ )PP | o=
/
in
X(pﬂir-l-h -y out ]Pu s e ey iﬂ}: ::(pj::t)ﬂn—[—]GEH—l—l(ﬁ’ m) <pm+]’ o out Ipl e .;iﬂ)

Here & is the composition of the following three operations: Fourier transfor-
mation, amputation and restriction on the mass shell’. (2.11) is the desired
result (see (1.4) and the end of Sect. 1)2

3. Quantum Massive Thirring Model

In this section the same technique as developed for the SG model is ap-
plied. We shall use the standard representation for the y-matrices:

01 0 ~1 1 o
S - WL P _
" [1 0]' ¢ [1 UJ’ o i [0 —1]

The QEM of the massive Thirring model read (0. =v y. a=1,2):
(TN [Boy,)| (X)X )= —im'(TN [Bo,|(x)X)

k E
— il TN [BOXea)] ()X ) 4115 2 (0%8(x—)) <TN[B&;,§M] X)
Jj=1 J

(3.1)

- (TN By — {waD)] ()X

I The superscript “prop” denotes amputated, one-particle irreducible Green functions.
2 (1.4) in the SG model was established in [6] using unitarity and imposing some require-
ments on the analyticity of the scattering amplitude.
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, Atc ,  m+
pite, gy _mie, o I[w(x)ﬂw(yt) w1 =0, etc,

where {...} denotes 1 oversubtraction. The rest of the QEM is obtained
from (3.1) by means of the changes | <52, 65 and/or conjugation of the com-
posite operators. Now the change 41— 2" is performed in the reccurrence re-

lations (1.3). Using the latter and (3.1) we obtain the following identity (fur-
ther on we suppress all irrelevant factors):

(3.2) 0,bp41=—m"2b,—ii0gbns1+2m'a D biwobi-+Ani1+S.L: n=0,

k + [=n

where “S.t¢.” stands for the omitted Schwinger terms which are of no impor-

tance in our consideration. One caneasily verify by induction in n the follow-
ing recurrence relation for A,:

Any1=0,A,—il0,Ay—2il" D (Alpibi+biw, A)

R+ l=n
R,l-+0

+24'm’ 1’Tb 2 b —{y )b 20k ; = 4 2 bilws—{waby

k+ l=r--1 kil=n
(3.3) i
: im — im
— A 14D Qwjy —wiy}b,—im’ 1+ b' w1—1%1})0,03 =0,

Using (3.1), (3.2) and (3.3), the WI for the conserved currents acquire the form
dt(wfbﬂ —h.c.)—im'0,(wbp1+-h.c.)=y 0,An

+2idey Y (AgbitbiA)—im' T (b5 —0.b7 ) (wily ))—
!e-l—I n—1
k=0
2. l‘fb(b;:—aab;:_f-welb:;_l) (wa— {wol)— i 77 (W —wiy}w |0y
im

1_—|-_f? (‘P’g _{"':Ug})b + im' I—I—b (‘#’1 g {WI})bH“"I k €. +S t

Here “S. ¢ again stands for the omitted Schwinger terms which in mo-
mentum space on the mass shell give contributions of the type (2.11). They

will be suppressed in the sequel. All /; have covariant structure of the o...0

(n+1 times)-component of a O(1,1) (Lorentz) tensor of rank n--1, [; is the
o...0 (n—1 times)-Lorentz tensor component. Hence all “anomalous” terms
(the right hand side of (3.4)) have the covariant structure of ao...o (2 times)-
Lorentz tensor component. It is obvious that (in complete analogy with the
SG case) only the last term in (3.1) and its counterparts are sources of “ano-
malies”. Thus the “anomalous” terms in (3.4) have the following general form

(3.5) JHE,Z Prey .~ (i, )

"——-,:.-_‘
J
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im s R .
| 1+bj£'Q?(*mw_m__c,-—{w};’au-’,ﬂ__‘H)—h-f-, Yo =Yo— Y1

"Il—l-l-u.-_—ll' i-—-.,‘:_-ull"
J J

Here C, denote Lorentz covariant polynomials in v and w of canonical dimen-

sion n, P and Q' are Lorentz covariant polynomials in vy and y with coel-
ficients eventually dependent on powers of i2’ and im'.

Bl Al

‘Fig. 3. Graphs contributing to the Zimmermann identity for
(N[} = w}wsoroy,ol(%)X)
It is simpler to deal with the integrated (over x) WI (3.4) in order

to avoid all total derivative terms. The analysis of the “anomalies” (3.5) com-
pletely resembles the line of argument in Sec. 2, i. e. making use of the ZI
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for normal products and the QEM we obtain again a nonhomogeneous set
of linear algebraic equations for all “anomalous” terms (cf. (2.8), (2.0)). In the
same way the latter reduce to Schwinger terms only and consequently (1.4) is
satisfied. Of course the ZI in the MTh model are much more complicated,
however, the anticommutation of the v’s under the normal product symbol,
Lorentz covariance and C- and P-invariance place severe restrictions on them,
thus allowing to complete the analysis. We shall illustrate the technique only

for the “anomalies” in the WI for [f'} for the sake of simplicity. The general
case then will be straightforward.
The integrated “anomalous” term in (3.4) for n=3 has the form

31" FTATAL £
(1 f;) f d>x{TN [({v}y — vl w.ove.q] (X)X )= (I—J:% A

The ZI for (3.6) is depicted in Fig. 3.

The operators D were defined in Sect. 2. The boxes represent proper
parts (amputated and one-particle irreducible)ol the corresponding Green func-
tions. The contributions of D= for m—4.5 in Fig. 3al, bl and that of D™
for m=—3 in Fig. 3all, alll, b1, blll vanish because of the fermion character
of the fields.

First of all let us consider the sum of the graphs in Fig. 3al, &I for m=1.
We have

aray  OUNTNWG 2 @+ DXTN @t a) Wby
X [d2x( TN [(w)avs] ()X,
(3.7b) (TN [ (.arave)] (PP 2)= CaX TN[(a0.0) W)™ (—P)Cote
(TN [, 2.0 D @)p"P(P) = s o/ T (%], )
() PO 2 m2) +()os T (PP, )2 p

+(o)apl "' P2/ M2, A)pE/m.

(3.7b) is a corollary of the C-invariance, C,; denotes the charge conjugation
matrix:

(3.6)

(3.7¢)

v'=—nC, ye=nCly, |n.f=1; C'y,C=—y, C1=C".

In (3.7¢) I'D), I'G), 'y are dimensionless invariant functions, I'® vanishes be-
cause of the P-invariance. Inserting (3.7b, ¢) in (3.7a) and applying the defi-
nition of D we see that (3.7a) vanishes. Further, we have to deal with the
sum of diagrams in Fig. 3al, bl with m—3. We obtain

(3 Sa)(Dﬂl( TN[W&IG},G?HW,G )] G")&WH (_!-1'9) L' -aT:IU-:xu(E") ﬁ:{>pmp : D(Z}( TN[(WTﬂj}aw’ﬁ) (’q;)ﬁ 1]

X wmWtz:(li{'_')ﬁzuyua(w‘_)-ﬂ:;}prﬂp)fdgx{ I'N [( Wm)u.‘i’m (Wja-=W£z (w)ﬂawﬂ:i] ('x)X>I

(TN [0a(@,079.)|(W)a, -« « (We)P™P(q1 3 Py 923 Pay §3) = C;;;C;; ;C;;é

(3.86) = i _
X{TN [(v,070%,0) (w)ﬂ;] et (w)ﬂ-;‘”“*‘(—éh s —@2 —Pas —qs —Ps)C,r, Cr Cor

a. oy o 0

1 2 3

5

(TN [9a(0.070.)] @)p - - - (@)aPP( P13 Par Py Poo P8)= 2, Paso Pb,o] 111

ab=1
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i=1
XFE"J (a.b) (P pe/t-25 D) (Y )apy -+ - (}'ﬂ)’ﬂ'ﬂf i (j}.u)ﬂnﬁulfj{a'b}(pfpk/mﬂ; 2]
5 3
t 2 Pao Dol 2 0 aip - - "y - - e)an I D (pipy/m®s A) £ -
- ab=1 f=1

Here and in what follows “...” stand for the omitted terms all of which are
annihilated by the D) operation. (3.8¢c) represents an expansion in Lorentz in-
variant functions. A little longer calculation verifies that (3.8a) reduces only
to Schwinger terms with the desired properties (cf. (2.11)). The same argu-
ments apply to the sum of the graphs in Fig. 3all, 4l and in Fig- 3elll, bllI

in the case m=2. gty
At the end we have to consider the sum of diagrams in Fig. 3al, 0

r m="=2.
(DTN [, (0.0 7.0)) @) g0 () PP+ DOTN [(w,070%.0) (W)}

Xw%w%(ﬁ)ﬁgpmp)_"dﬂx{ TN[@’)alﬁfﬂl(@)u;ﬂﬂg](x)X>s

54 = — : o5 tenet
(TN [a,(@,070,) 8% 05" (q15 T2 92) _'Cﬁlﬁ'lcﬂaﬁé

(3.92)

(3.9b)

>< i TN [(;,a?aqjm) T;ﬂi ]wﬂ;wﬂ;;ﬁgpmr}(mql y —qoy — pﬂ) C ) C "o

3
— — = 1
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Inserting (3.9b, ¢) in (3.9a) and applying the QEM it is rather straightforward
(though technically complicated) to derive that (3.9a) is equal to F(A)A+
Schwinger terms, where A is the “anomalous” term in (3.6) and F(1) is ex-
pressed as a linear combination of the invariant functions in (3.9c) for zero
momenta. The case m-—1 for graphs in Fig. 3all, bl and Fig. 3alll, bl is
treated in complete analogy. Thus we obtain the following important relation:

(3.10) A=GA+S.t; A=(1—GR)X(S. b),

where the series ((1) in 2 has zero constant term. (3.10) is the desired result

in- the case of /¢

Applying to the general case (3.5) the same technique as described above
which looks here much more complicated, ore proves the validity of (1.4) as
in the Sine-Gordon case,
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Note added in Proof

After submission of this work for publication the papers [14] appeared

where the same problems were discussed. The results are in agreement with
ours.
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COPNIUVH WK

Beckoneunass cucrema 3aKOHOB COXPaHEHHS /ISl YPaBHEHUS
Cunyc-I'opaon u maccusHolt mojenn Tuppunra

E. P. Hucumos

(PeswwMe)

B pa6Gore paccmarpuBaercsi OeCKOHEYHAs CHCTeMAa COXPAHAKIIHUXCHA TOKOB
nasi ypaBHenuss CuHyc-I'opaoH © MaccHBHOH MmoznenusTuppuHra. B KBaHTOBOH
TEOPHH B pe3yJbTaTe NEePEeHOPMHMPOBKHU BO3HHUKAIOT aHOMaJbHbleé 4YJI€HBl B COOT-
BETCTBYIOILUX TOXJAecTBax Yopzaa. [lokazaHno, 4To B AE€HCTBHTEJBHOCTH 3TH aHO-
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MaJU{ BeAYT TOJBKO K HEKOTOPOH MOJH(MUKAIMK KJACCHUYECKUX BbIPAXKEHHH A

TOKOB M TakuM o0pa3soM JOKasanbl B paMKaX TeOPUH BO3MYIIEHHI 3aMeuya-
TeJbHblEe CBOHCTBA MOJeJIEH : COXpaHeHHEe YMCJIA YacTHll, TPUBHAJILHOE paccesiHue

H (paxkTOpU3alHsd S-MaTpPHUILbI.

MojaenupoBaHue XapakTepUCTUK yNpaBJsiioLlen
CUCTEMbl YCTAHOBKHM IS PErucTpalui
LWUMPOKHUX aTMOC(EPHBIX JIMBHEN

H. Cmamernos, C. YVuies
USIHSIE, BAH

[lepudepuiinas ynpasasiomas cucrema Taub-l11laHbCKO# KOMMJIEKCHOH YCTaHOBKH OTOGHpaer
B paboueil obnactu R<10 m c sdpexTuBHOCTLIO He Xyxe 900/, auBueil Beanunnodt N, =>4.105
¢ BospacTHpIM napametpom 0,6==5<01,2. Tlpu N,=4.105 apdexTuBHocts B TOHl e obaacTu
He 3aBUCHT OT BeAWYHHBI JuBHA /N,. VIaMepeHHbIe NPOCTPAHCTBEHHbIE pacnpejlieieHHdA NOTOKOB
MIOOHOB M 9JIEKTPOHOB Ha GOJbILIKMX PAaCCTOAHUAX OT OCH JIMBHH He HMCKAXCHblI BAHAHHEM NpUMe-

HEHHOH cucTeMbl 0T60pa JAMBHERN.

B pa6orax [1, 2] uccaenoBanbl MPOCTPAHCTBEHHBIE PACOpPEENEHHA MOTOKOB
BBICOKOSHEPIreTHYHBIX MIOOHOB M 3JIEKTPOHOB, 4 TAKXE€ SHePreTHYeCKUH CIEKTp
MIOOHOB Ha OOJBIIMX pPacCTOSIHUSX OT OCH B JHBHAX BeJuyuHod 10°—5.108,

3apericTpupoBaHHblX Ha Tsanb-lllaHbCKON ycTaHOB-
ke |[3]. Coueranue uenTpanbHOd [3] U nepudepuii-
HOM [1] ynpaBasiomei cuCTEMbl Jal0 BO3MOXK-
HOCTB NIPOJABHHYThLCH BINEpPea B H3y4eHHH (DYHKIHH
NPOCTPAHCTBEHHOrO pacnpeneneHus @, (r) noroka

MIOOHOB ¢ E, =5 GeV B uHTepBale paccTOAHUI
or ocH JuBHa 8 m<r<180 m. [Ipu stomM pnnas
M3YYEHHS XapaKTEePUCTHK MIOOHHOIO MOTOKAa Ha
pacctosHuax 80<r< 180 m HCnoab30BaAOCh TOJb=

KO YynpaBjeHHe OT nepuPepuHON MacTepHOH CH-
cremul ([IEMA).

[lepudepuitnas ynpasasioiias CHCTEMA COCTOUT
3 10 CUHHTHANAUMOHHBIX CYETYMKOB, IMJIOMIAABIO
0,26 m? kaxaplit [1], KOTOpBHIE pa3MelleHbl IOMAPHO
B MSATH NYHKTax perucrpauuu [puc. 1]. CxkomnaHo-
BaHHBIH TaKUM o00pa3oM JeTeKTOpPHBIH Kkpect A
MOOuJIEeH B uHTEpBane r=0— 150 m OT LieHTpa KOMII-
JeKCHOH ycTtaHoBkH. J[lna ¢dopmupoBaHus ynpas-
JAIOIIEr0 CHUrHajla MCHOJB3YIOTCH TOJBKO MAThH
CUMHTH/IAMOHHBIX  CYETYHUKOB, PACHOJOXKEHHbIX
B IlEHTpe M HA paccTrosHuu 20 m OT Hero. DJek-

Puc. 1. T'eomerpus pasmemenns
NETEKTOPOB nepugpepruiHON ynpas-
AA01IeNd CHCTEeMBI ;

A — nerekropHpit kpect: B —
JHBHEBAsA 4YaCTb KOMNJNEKCHOMN
YCTaHOBKH
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